Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress
نویسندگان
چکیده
Abscisic acid (ABA) regulates various developmental processes and stress responses in plants. Protein phosphorylation/dephosphorylation is a central post-translational modification (PTM) in ABA signaling. However, the phosphoproteins regulated by ABA under osmotic stress remain unknown in maize. In this study, maize mutant vp5 (deficient in ABA biosynthesis) and wild-type Vp5 were used to identify leaf phosphoproteins regulated by ABA under osmotic stress. Up to 4052 phosphopeptides, corresponding to 3017 phosphoproteins, were identified by Multiplex run iTRAQ-based quantitative proteomic and LC-MS/MS methods. The 4052 phosphopeptides contained 5723 non-redundant phosphosites; 512 phosphopeptides (379 in Vp5, 133 in vp5) displayed at least a 1.5-fold change of phosphorylation level under osmotic stress, of which 40 shared common in both genotypes and were differentially regulated by ABA. Comparing the signaling pathways involved in vp5 response to osmotic stress and those that in Vp5, indicated that ABA played a vital role in regulating these pathways related to mRNA synthesis, protein synthesis and photosynthesis. Our results provide a comprehensive dataset of phosphopeptides and phosphorylation sites regulated by ABA in maize adaptation to osmotic stress. This will be helpful to elucidate the ABA-mediate mechanism of maize endurance to drought by triggering phosphorylation or dephosphorylation cascades.
منابع مشابه
Quantitative Proteomic Analyses Identify ABA-Related Proteins and Signal Pathways in Maize Leaves under Drought Conditions
Drought stress is one of major factors resulting in maize yield loss. The roles of abscisic acid (ABA) have been widely studied in crops in response to drought stress. However, more attention is needed to identify key ABA-related proteins and also gain deeper molecular insights about drought stress in maize. Based on this need, the physiology and proteomics of the ABA-deficient maize mutant vp5...
متن کاملPhosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress
Drought and heat stress, especially their combination, greatly affect crop production. Many studies have described transcriptome, proteome and phosphoproteome changes in response of plants to drought or heat stress. However, the study about the phosphoproteomic changes in response of crops to the combination stress is scare. To understand the mechanism of maize responses to the drought and heat...
متن کاملComparative Proteomic Analysis of Two Manilkara Species Leaves Under NaCl Stress
Background: Salinity is a major environmental limiting factor, which affect agricultural production. The two Manilkara seedlings (M. roxburghiana and M. zapota) with high economic importance, could not adapt well to higher soil salinity and little is known about their proteomic mechanisms. Objectives: The mechanisms responsible ...
متن کاملTwo structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum.
The maize (Zea mays) superoxide dismutase genes Sod4 and Sod4A are highly similar in structure but each responds differentially to environmental signals. We examined the effects of the hormone abscisic acid (ABA) on the developmental response of Sod4 and Sod4A. Although both Sod4 and Sod4A transcripts accumulate during late embryogenesis, only Sod4 is up-regulated by ABA and osmotic stress. Acc...
متن کاملQuantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid
Phytohormone salicylic acid (SA) plays an important role in regulating various physiological and biochemical processes. Our previous study identified several protein kinases responsive to SA, suggesting that phosphorylation events play an important role in the plant response to SA. In this study, we characterized the phosphoproteome of maize in response to SA using isotope tags for relative and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015